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1. Introduction

1-1. What can you see by electron microscopy? Which scale can electron microscopy
deal with for biology? Examplel: chromatin.

1-2. Single particle analysis and electron tomography: 3D Electron microscopy without
crystallization. Example2: Dynamics of Clp protease.

2. Basics of transmission electron microscopy

2-1. 3D reconstruction is a backprojection from micrographs. You need to know the
view angle of each projection.

2-2. Electron cryo-microscopy: ice embedded specimen. Why cryo?

2-3. Radiation damage

3. Single particle analysis

3-1. Example 3: Ribosome

3-2. Single particle analysis is a method for purified molecules. View angles of
projections and 3D structure are determined simultaneously.

3-3. Strategy of single particle analysis: Projection matching

3-4. Example 4: Clp protease

3-5. Resolution: What does resolution mean? How to define resolution in single particle
analysis?

4. Electron tomography

4-1. In electron tomography, images are acquired from the same view by tilting the
specimen to fill the whole Fourier space for the 3D reconstruction.

4-2. Strategy of electron tomography. Example5: flagellum. Gold cluster for
translational alignment.

4-3. Example6: Whole cell tomography

4-4. Cryo sample is sensitive for radiation damage. Since electron tomography requires
multiple exposures, the radiation damage is serious and becomes the limitation of
resolution.
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Imaging wavelength of transmission electron
microscopy for biology
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Our target: Biological macromolecules (Protein, Nucleic Acids)
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Interdisciplinary Approach
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X-ray crystallography
the most powerful tool for protein structural analysis
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Various specimen preparations for biological macromolecules

We would like to observe molecules as close to the physiological
conditions as possible.
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Cryo-EM: Ice-Embedding

Holey carbon grid

Cryo-holder




Transmission Electron Microscope
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Wave—particle duality of electrons

Right slit open

Left slit apen

Both slits apen

L de Brogli proposed and G. P. Thomson proved that electron has
wave-particle duality.




Interference of waves
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Image formation for cryo-EM

Fllmage(v)) = F(Proj(r)) CTF(v) Env(v)
v: spatial frequency

Proj(r) = ,[p(x,y,z) dz
p: density of the object

CTF(V) = '{(1'Famp2)u25in(x(v» + I:amp COS(X(V))}
phase contrast amplitude contrast

x(v) = -21 [CA3vA [ 4 — Afav? [ 2]
Af : defocus

A: wavelength of electron

v: spatial frequency

Famp << 1 for cryo

Env: Envelop decay (gaussian), dependent on the coherence of the beam
Env(v)=exp[-(ra/A)2(CsA3v3+AfAv)?]




Close to focus Large underfocus

Image(v) = #(Proj(r)) CTF(v) Env(v)

Env: Envelop decay, dependent on the coherence of the beam

PCTF(v) = -sin(y(v))
1(v) = -21 [CA3v* [ 4 — Afav? [ 2]

Close to focus
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Biological specimen (especially ice-embedded) is very sensitive to the radiation damage
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Various methodologies of 3D electron microscopy

1. 2D crystal
2. Helical reconstruction
3. Single particle analysis

4. Electron tomography

2D crystal: electron microscopy and electron diffraction

B Figure 1| Electron crystallography of AQPO
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Gonen et al. (2005) Nature 438, 633. < u

“Molecular Biology of the Cell”

In successful cases, you can build atomic models
directly from EM data.
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projects from either side of the membrane, visible as two concentric rings of density, 30 A
apart. A single receptor, cut centrally, is shown at the top. The membrane-spanning pore
and the N-terminal ligand-binding domain, shaping a large central vestibule, are outlined
by red and green rectangles, respectively. The surfaces encompassing the hydrophabic
core of the membrane are assumed to lie along the centres of the rings of density*

Miyazawa et al. (2003) Nature 423, 949.

Single particle analysis: 2D averaging

Advantage to reconstruct without crystallization: Free solution condition

Clp enzyme w/o substrate
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Single Particle Analysis: Projection Matchin
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3D reconstruction of large macromolecular
complexes: Modeling of RNA in ribosome
by combining crystallography and EM

A
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7. Detectors (Photographic Films, Imaging Plates, Digital Camera)

Photographic Films Imaging Plates Digital Camera

Two important parameters to evaluate detectors:
(1) Resolution (how many microns one pixel is; how sharp one pixel is)
(2) Size (how many pixels in one image)
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Point Spread Function determines Resolution of the Detector

~ Simulation of electron pathways in a detector

McMullen et al. (2009) Ultramicroscopy 109, 1144,
More secondary electron -> wider spread
Less secondary electron -> less sensitivity

Photographic Films

Advantages:
Wide area (15kx18k), high point spread function

Disadvantages:
Low sensitivity, Fog, Narrow dynamic range, Inconvenience
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Digital (CCD) Camera

Scintillator
Fiber optics

CCD chip

Separate vacuum Peltier cooler

Advantages:
High sensitivity, High linearity, Convenience

Disadvantages:
Narrow area (4kx4k)
Poor point spread function (because of the scintillator)

Direct Electron Detector: Revolution of EM Camera

Passivation + Interconnect

McMullen et al. (2009) Ultramicroscopy 109, 1126.
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Progress of single particle analysis
Getting close to near atomic resolution

Halic et al. 2006

Gogala et al. 2014

8A with a CMOS camera/negative
Beckmann lab (4.8A with a direct camera)

Flagella and motile cilia in vertebrates
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Nodal cilia generate unidirectional flow and determine left-right asymmetry

Hirokawa et al. (2006) Cell 125, 33.
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Eukaryotic flagella/cilia have motility by themselves

Chlamydomonas reinhardtii Isolated flagella+ATP
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Mouse respiratory cilia
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Dr. S. Toba (KARC, NICT, Japan)
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Web page of S. King Lab.

ATP-sensitive MT binding
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Dynein arms in flagella are highly complexed force-
generating apparatus composed of various
components and produce bending motion
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Cryo electron tomography

96nm periodic unit on the microtubule doublet from the axoneme
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Bui et al. (2008) J. Cell Biol. 183,923 Radial spoke
Bui et al. (2009) J. Cell Biol. 186, 437

Pigino et al. (2011) J. Cell Biol. 195, 673

Bui et al. (2012) J. Cell Biol. 198, 913
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Flagella Structure reconstructed by Electron Tomograph

Modified from Bui et al. (2009) J. Cell Biol. 186, 437

Example: Whole cell tomography
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Electron Tomogqgraphy

Single Farticle Analysis Electron Tomography

Specimen on the stage

ﬂ’ | Images on the CCD camera

’? |

30 reconstruction

Single particle analysis Electron tomography
Principle to obtain Merged many particles Take micrographs of one particle
multiple views with various views in tilted at various angle in the

solution microscope
Crystallization Not needed Not needed
Structural Averaged out Visualized individually
heterogeneity
Current resolution High (up to 8 A) Low (currently 25 A)
Missing information None / Missing cone Missing wedge

Lower dose
More intact structure H|gher resolution

o = tomography

single particle analysis

tubular crystal
10 nm — 2D crystal

Resolution of various methodology of 3D cryo-TEM
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